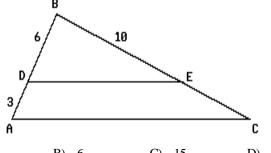
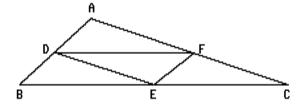

Name: _

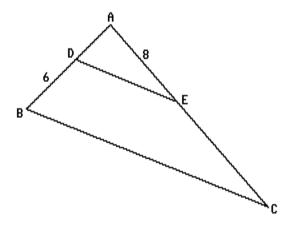
In the accompanying diagram of $\triangle ABC$, $\overline{AB} \perp \overline{BC}$ and $\overline{EF} \perp \overline{AB}$ at E. If BC = 12, AB = 16, and AE = 8, find EF.



- In right triangle ABC, altitude $\overline{\text{CD}}$ is drawn to the hypotenuse $\overline{\text{AB}}$. 2) If AD = 4 and DB = 9, then CD is
 - A) 5
- B) $\sqrt{3}$
- C) 13
- D) 6
- In right triangle ABC, altitude $\overline{\text{CD}}$ is drawn to the hypotenuse $\overline{\text{AB}}$. If CD = 6 and AD = 3, find the length of DB.
- In the accompanying diagram, \overline{AB} and \overline{CD} intersect at point E 4) such that \overline{AC} is parallel to \overline{DB} . If AC = 3, DB = 4, and AB = 14, what is AE?


B) 10.5

- D) 6
- In the accompanying diagram of $\triangle ABC$, $\overline{DE} \parallel \overline{AC}$, BD = 6, DA = 3, 5) and BE = 10. What is the measure of EC?



- A) 20
- B) 6
- C) 15
- D) 5

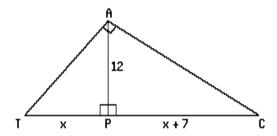
6) In the accompanying diagram of \triangle ABC, AB = 5, AC = 10, and BC = 13. Triangle DEF is formed by connecting the midpoints of the sides of \triangle ABC. Find the perimeter of \triangle DEF.



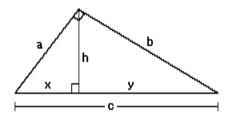
- 7) The ratio of the corresponding sides of two similar triangles is 7:5. Find the ratio of their perimeters.
- 8) The sides of a triangle are 3, 4, and 5. Find the length of the shortest side of a similar triangle whose longest side has length 20.
- 9) Which pair of triangles must be similar?
 - A) two right triangles
 - B) two scalene triangles with congruent bases
 - C) two isosceles triangles with congruent vertex angles
 - D) two obtuse triangles
- 10) In the accompanying diagram, $\overline{DE} \parallel \overline{BC}$, DB = 6, and AE = 8. If EC is three times AD, find AD.

11) The sides of a triangle measure 3, 4, and 5. Find the length of the smallest side of a similar triangle whose perimeter is 8.

12) In the accompanying diagram of $\triangle ABC$, $m\angle B = m\angle ADE$ and $m\angle C = 80^{\circ}$. Find $m\angle AED$.

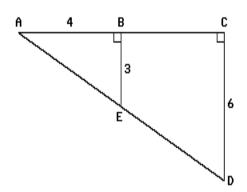

- In right triangle ABC, altitude $\overline{\text{CD}}$ is drawn to hypotenuse $\overline{\text{AB}}$. If $\overline{\text{AD}} = 4$ and $\overline{\text{DB}} = 16$, find CD.
- In triangle ABC, D is a point on \overline{AB} and E is a point on \overline{AC} such that $\overline{DE} \parallel \overline{BC}$. If AD = 2, DB = x 1, AE = x, and EC = x + 2, find AE.
- 15) In triangle ABC, D is a point on \overline{AB} and E is a point on \overline{AC} such that \overline{DE} is parallel to \overline{BC} . If AB = 12, AC = 15, and AD = 8, find the length of \overline{AE} .
- 16) In right triangle ABC, altitude \overline{CD} is drawn to hypotenuse \overline{AB} . If AC = 4 and DB is 4 more that the length of \overline{AD} . find AD.
- 17) If the altitude drawn to the hypotenuse of a right triangle has length 10, the lengths of the segments of the hypotenuse may be
 - A) 5 and 20

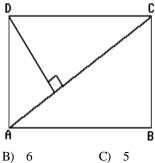
C) 2 and 5


B) 50 and 50

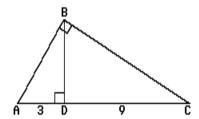
D) 3 and 7

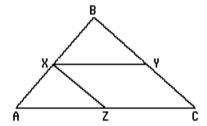
18) In the accompanying diagram of right triangle CAT, altitude \overline{AP} divides hypotenuse \overline{TC} into segments of lengths x and x + 7, and AP = 12.

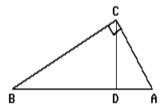

- (a) Find the length of \overline{TP} .
- (b) Find the area of $\triangle CAT$.
- (c) Find the measure of $\angle T$ to the nearest degree.
- 19) In the accompanying figure, *a*, *b*, and *c* represent the sides of a right triangle. The segments made by altitude *h* drawn to hypotenuse *c* are represented by *x* and *y*. Which statement must be true?


- A) $b^2 = x^2 + y^2$
- C) $\frac{x}{a} = \frac{a}{v}$

B) $\frac{x}{h} = \frac{h}{v}$


- D) $\frac{h}{x} = \frac{x}{y}$
- 20) In the accompanying figure, $\overline{AB} \perp \overline{BE}$, $\overline{AC} \perp \overline{CD}$, AB = 4, BE = 3, and CD = 6. Find the length of \overline{AC} .


- The sides of a triangle are 10, 11, and 13. Find the perimeter of the triangle that is formed by connecting the midpoints of the sides of the triangle.
- In the accompanying diagram of rectangle ABCD, \overline{DE} is 22) perpendicular to diagonal \overline{AC} . If AE = 3 and EC = 9, what is the length of \overline{AD} ?


- A) $\sqrt{27}$
- B) 6
- D) 4
- 23) In the accompanying diagram of right triangle ABC, altitude \overline{BD} divides hypotenuse \overline{AC} into segments with lengths of 3 and 9. Find the length of leg \overline{AB} .

In the accompanying diagram of $\triangle ABC$, AB = 6, BC = 8, and AC = 12. Points X, Y, and Z are midpoints of \overline{AB} , \overline{BC} , and \overline{AC} , respectively. Find the perimeter of quadrilateral XYCZ.

25) In the accompanying diagram of $\triangle ABC$, m $\angle ACB = 90^{\circ}$ and \overline{CD} is an altitude. If AD = 2 and DB = 6, find AC.

- 26) In right triangle ABC, altitude \(\overline{CD}\) is drawn to hypotenuse \(\overline{AB}\). If AD is 12 and DB is three less than the altitude, find the length of \(\overline{CD}\).
- 27) The lengths of the sides of a triangle are 5, 12, and 13. What is the length of the longest side of a similar triangle whose perimeter is 90?
 - A) 36
- B) 13
- C) 39
- D) 15
- 28) In $\triangle DEF$, X is a point on \overline{EF} and Y is a point on \overline{DF} so that $\overline{XY} \parallel \overline{DE}$. If XF = 10, YF = 6, and EF = 13, what is DY?
 - A) 11.2

C) 1.8

B) 18

- D) 14.8
- 29) In right triangle ABC, $m\angle C = 90^{\circ}$, D is a point on \overline{AB} , and $\overline{CD} \perp \overline{AB}$. If AB = 20 and AD = 5, the length of \overline{AC} is
 - A) 2

C) 10

B) $\sqrt{300}$

- D) 4
- 30) Find the length of the line segment that joins the midpoints of two sides of a triangle whose third side is 10.
- 31) A girl 5 feet tall casts a shadow 8 feet long. At the same time, a tree casts a shadow 24 feet long. What is the height, in feet, of the tree?